A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features

نویسندگان

  • P. Amudha
  • S. Karthik
  • S. Sivakumari
چکیده

Intrusion detection has become a main part of network security due to the huge number of attacks which affects the computers. This is due to the extensive growth of internet connectivity and accessibility to information systems worldwide. To deal with this problem, in this paper a hybrid algorithm is proposed to integrate Modified Artificial Bee Colony (MABC) with Enhanced Particle Swarm Optimization (EPSO) to predict the intrusion detection problem. The algorithms are combined together to find out better optimization results and the classification accuracies are obtained by 10-fold cross-validation method. The purpose of this paper is to select the most relevant features that can represent the pattern of the network traffic and test its effect on the success of the proposed hybrid classification algorithm. To investigate the performance of the proposed method, intrusion detection KDDCup'99 benchmark dataset from the UCI Machine Learning repository is used. The performance of the proposed method is compared with the other machine learning algorithms and found to be significantly different.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

راهکار ترکیبی نوین جهت تشخیص نفوذ در شبکه‌های کامپیوتری با استفاده از الگوریتم-های هوش محاسباتی

In this paper, a novel hybrid method is proposed for intrusion detection in computer networks using combination of misuse-based and anomaly-based detection models with the aim of performance improvement. In the proposed hybrid approach, a set of algorithms and models is employed. The selection of input features is performed using shuffled frog-leaping (SFL) algorithm. The misuse detection modul...

متن کامل

Intrusion Detection System in Computer Network Using Hybrid Algorithms (SVM and ABC)

In recent years, the needs of the Internet are felt in lives of all people. Accordingly, many studies have been done on security in virtual environment. Old technics such as firewalls, authentication and encryption could not provide Internet security completely; So, Intrusion detection system is created as a new solution and a defense wall in cyber environment. Many studies were performed on di...

متن کامل

Data Preprocessing for Intrusion Detection System using Swarm Intelligence Techniques

Due to access of malicious data in internet, Intrusion detection system becomes an important element in system security that controls real time data and leads to huge dimensional problem, so a data pre-processing is necessary to reduce haziness and to clean network data. To reduce false positive rate and to increase efficiency of detection, the paper proposed a new swarm intelligence technique ...

متن کامل

Swarm Based Classifier Model Using Ensemble Feature Ranking Methods

Intrusion Detection System (IDS) is a security support mechanism which has become an essential component of security infrastructure to detect attacks, identify and track the intruders. In intrusion detection, the quantity of data is huge that includes thousands of traffic records with number of various features. Selecting a subset of informative features can lead to improved classification accu...

متن کامل

Intrusion Detection based on a Novel Hybrid Learning Approach

Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015